Energy localization invariance of tidal work in general relativity

نویسنده

  • Marc Favata
چکیده

2 1 2 EjkdIjk /dt . Thorne has posed the following question: In view of the fact that the gravitational interaction energy E int between the tidal field and the body is ambiguous by an amount ;EjkIjk , is the tidal work also ambiguous by this amount, and therefore is the formula dW/dt52 1 2 EjkdIjk /dt only valid unambiguously when integrated over time scales long compared to that for Ijk to change substantially? This paper completes a demonstration that the answer is no; dW/dt is not ambiguous in this way. More specifically, this paper shows that dW/dt is unambiguously given by 2 1 2 EjkdIjk /dt independently of one’s choice of how to localize gravitational energy in general relativity. This is proved by explicitly computing dW/dt using various gravitational stress-energy pseudotensors ~Einstein, Landau-Lifshitz, Mo”ller! as well as Bergmann’s conserved quantities which generalize many of the pseudotensors to include an arbitrary function of position. A discussion is also given of the problem of formulating conservation laws in general relativity and the role played by the various pseudotensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The gauge invariance of general relativistic tidal heating

When a self-gravitating body (e.g., a neutron star or black hole) interacts with an external tidal field (e.g., that of a binary companion), the interaction can do work on the body, changing its massenergy. The details of this “tidal heating” are analyzed using the Landau-Lifshitz pseudotensor and the local asymptotic rest frame of the body. It is shown that the work done on the body is gaugein...

متن کامل

Bulk Viscous Bianchi Type VI0 Cosmological Model in the Self-creation Theory of Gravitation and in the General Theory of Relativity

In the second self-creation theory of gravitation and in the general theory of relativity, Bianchi type VI0 cosmological model in the presence of viscous fluid is studied. An exact solution of the field equations is given by considering the cosmological model yields a constant decelerations parameter q=constant and the coefficients of the metric are taken as A(t)=[c1t+c<su...

متن کامل

The Energy-Momentum Problem in General Relativity

Energy-momentum is an important conserved quantity whose definition has been a focus of many investigations in general relativity. Unfortunately, there is still no generally accepted definition of energy and momentum in general relativity. Attempts aimed at finding a quantity for describing distribution of energy-momentum due to matter, non-gravitational and gravitational fields only resulted i...

متن کامل

A new test of conservation laws and Lorentz invariance in relativistic gravity

General relativity predicts that energy and momentum conservation laws hold and that preferred frames do not exist. The parametrised post-Newtonian formalism (PPN) phenomenologically quantifies possible deviations from general relativity. The PPN parameter α3 (which identically vanishes in general relativity) plays a dual role in that it is associated both with a violation of the momentum conse...

متن کامل

A New Test of Conservation Laws and Lorentz Invariance in Relativistic Gravity

General relativity predicts that energy and momentum conservation laws hold and that preferred frames do not exist. The parametrised post-Newtonian formalism (PPN) phenomenologically quantifies possible deviations from general relativity. The PPN parameter α 3 (which identically vanishes in general relativity) plays a dual role in that it is associated both with a violation of the momentum cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001